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Flux—difference-splitting (FDS) methods for the unsteady Euler
equations are reviewed, and it is shown that any of the pro-—
posed methods can be regarded as a prescription for finding the
entries in a "Riemann table”, which records the effect on each
flow quantity of the wave system generated by the differences
between neighbouring pairs of states. For an assoclated
finite-difference scheme to be efficient, it is first of all
necessary that the table is constructed economically, and then
that the information contained in it should be fully used. We
describe a scheme which is efficient in both respects.

INTRODUCTION

There is at present a lot of iaterest in the development of numerical schemes for
hyperbolic systems of partial differential equations; particularly in schemes
whose numerical processes attempt to model falrly closely the physical events
taking place in the flow. For a long time the equal importance of conservation
laws and wave phenomena have been realised, but until quite recently it had not
been apparent how to devise efficient numerical methods which give the same
degree of emphasis to both. The piloneering work of Godunov [17 remained of
largely academic interest, since it led to an algorithm which was only first
order accurate, and was distinctly expensive to use. Certain aspects of
Godunov's method, however, have very strongly influenced much of the more recent
research; this 1is especially true of the use to which he puts exact solutions of
the Riemann problem. To make our meaning clear we must recapitulate the basic
Godunov scheme for a set of one—dimensional conservation laws

_&-yyyx=o (1.1)

We assume that at time tn data E?(X) is available, where u is a vector—-valued

function of the continuous real variable x. The first step is to replace this
e n

data by a piecewis% constant approximation 1_(x), such that within a given inter-

val <Xi-%’ Xi+%) v (x) assumes the constant state

v o= ! IX+% E?(x)dx (1.2)

—i Xi+§ - Xi—% xi_%

In the language of finite elements, this stage would be called a projection. 1In
this way we obtain an approximate problem which can be solved exactly, because in
a portion of x, t space (X + " h, LI + h) and (tn, t? + At) defined by suf-
ficiently small values of % and At, we’can make use of the known algebralc solu—
tion to the Riemann problem {2]. The Riemann problem is, by definition, the
interaction between two adjacent, and initially uniform, states. When this exact
solution U(x, t) to the approximate problem has been worked out, we take

E?+l(x) - Ulx, t:n+l

)

and repeat the process of alternating projections and solutions.




The theoretical foundations of Godunov's method are very sound. The projection
step (1.2), and the subsequent set of Riemann solutions, all respect the conser—
vation laws. The Riemann solutions serve to propagate information in the correct
directions, and to maintain a proper distinction between compression and expan-
sion waves. This latter feature ensures that Godunov's scheme obeys an
appropriate entropy law [3]. Despite these virtues, however, the two halves of
Godunov's scheme are, from the viewpoint of computational efficiency, ill-
matched. Solving the Riemann problem exactly is an iterative process, which in
the case of gasdynamics involves at each iteration the taking of logical deci-
sions and the evaluation of fractional powers. It is a computational extrava-
gence to employ this expensive machinery in the presence of the large truncation
errors induced by (1.2).

In recognition of this fact, several authors [4—8] have devised approximate
Riemann solvers, which provide, with varying degrees of accuracy, some Or all of
the information regarding wave speeds and intensities which could have been got
from the exact solution. When these approximate solvers are substituted into the
Godunov scheme, there is usually very 1ittle deterioration in the numerical
results (see [5} and {9] for examples). At the same time, in order to remove the
incompatibility from the other half of the partnership, there have been devised
more elaborate numerical schemes within which the Riemann solvers play a role.
Common to most of these, however, is the adoption of some assumed form for u (%),

the continuously defined data whose projection is represented by u’. Harten, in
the first-order version of his high resolution scheme [9, 10], and also in his
collaborative work with Hyman on moving grids [11], assumes plecewise constant
data within each interval, whereas van Leer 12] assumes piecewise linear data.
Ia each case, the data is assumed to be discontinuous at almost all the interval
edges. Woodward and Colella {13] assume piecewise parabolic data, which may be
continuous if the average values within the cells vary sufficiently slowly. If
the data varies rapidly, however, discontinuities at the edges of intervals are
again allowed.

In all these methods [9“13], it is assumed that the purpose of the Riemann solver
i{s to resolve the discontinuous parts of the data. The other parts of the
algorithms then have to be carefully matched to the assumed behaviour of the
smooth parts of the data. In contrast, we wish to adopt a point of view which
1s, intentionally, less clear cut in its interpretation. We still regard the
numerical data as representing the average state inside a cell (eqn (1.2))},
partly because this provides a natural way to deal with irregular grids [14}, but
we do not attempt to be precise about the distribution of states within the cell.
Instead, we argue loosely that if most of cell i 18 occupled by fluid more-or-
less in state u,, and most of cell (i+1) by fluld more—or—less in state Yiyre
then whatever 1S happening within these cells, it will be a set of wave inzerac—
tions closely resembling the wave interactions which take place in the Riemann
problem defined by (E{’ u,, ). To solve the Riemann problem approximately is
then a perfectly natural procedure, because the error in the solution does no
more than reflect our ignorance about what is really happening. We admit,
however, one exception to this line of argument. If the two states are such that
they can be connected by a shock transition, then it is in the nature of hyper-
bolic systems that either they are so connected or that they will be soon. We
therefore attach especial impofggﬁbe to Riemann solvers which are able to
recognise shock transitions.

We will use the word 'explanation' to denote whatever items of information about
wave speeds, amplitudes, etc, will prove most helpful to incorporate into a
numerical scheme. The best matching between a numerical scheme and an approxi-
mate Riemann solver will occur when the kind of explanation we wish for 1is
generated as economically as possible.




In Section 2 we set out with some supporting arguments, the particular form of
explanation that will in our judgement be the most generally useful. We show,
for the particular case of the unsteady Euler equations in one space dimension,
that it can be completely generated from a knowledge of three scalar quantities.
The non-linear algebraic problem of finding these quantities turns out to have a
unique solution, which is precisely the 'square-root—averaging' procedure of Ref
[5}. The present paper therefore supplements and continues the analysis of [5]
in the following ways.

(a) It puts forward in more detail the computational motives which underlay the
somewhat abstract presentation given in [5 .

(b) Certain properties of the averaging procedure which were not apparent from
[5] are easily demonstrated in the course of its present derivation.

(¢) We then demonstrate how we can generate, along the lines suggested in [15]
and [16], a very simple numerical scheme which advances the solution in time,
using almost no information, apart from that contained in the 'explanations'.
This scheme can be third-order accurate in the case of linear advection,
second-order accurate in smooth regions of nmon-linear flows, and free from
spurious oscillations around discontinuities.

(d) To demonstrate the robustness and practicality of the method, we apply it
to a rather severe test problem proposed by Woodward and Colella, [17], involving
the collision, in a n n-unifogm environment, between two blast waves having
pressure ratios of 10 and 10 .

(e) We present a simple modification of the method which ensures that it meets
an evolutionary form of the entropy condition.

THE CHOICE OF A DESCRIPTION

We consider two adjacent states, which we shall refer to as N , and propose
these as left-hand and right-hand input states for the Riemann problem. In
general we expect the solution to consist of m waves (which may be shocks, con-
tacts or expansions) separating a total of (m+l) piecewise comnstant states,
including the two given input states (Fig 1). Here m is the number of indepen—
dent conservation laws contained in (l.1). There are many possible ways to
describe the solution once it has been obtained. We could give the constant sta-
tes between the waves, or we could give the jumps across the waves. In either
event we could use the primitive variables (usually thought of as p, u, p for
Eulerian gasdynamics) or the conserved variables (more correctly described
perhaps as densit}es or concentrations of conserved variables, p, m = pu,

e = p/(¥-1) + $pu”). We could also use the fluxes of the conserved quantities
(pu, ptpu~, ulet+p)), or any set of derived quantities, like temperature, entropy,
or kinetic energy. For conservation laws such that the characteristic equations
can be integrated to produce Riemann Invariants, we could use those.

It hardly seems possible to point to any set of variables as being for all pur-
poses inherently superlor to any other; indeed, an intelligent human calculator
would change variables many times in the course of building up a plcture of some
complex flow. Lombard and his co-workers make some interesting observations on
this topic [8, 18, 19], and in the present formulation of our work we have found
these very stimulating. Of course a solution in one form can always be ‘
translated into another form, but the effort of translation may not be negli-
gible, and information which is {mmediately apparent from one form may not be
obvious in another. Our own views concerning the best presentation of a solu-
tion, although based on long reflection and debate, are still cautious and provi-
sional. We are inclined to suppose that the best policy for the Euler equations




is to work primarily with the conserved variables, since we have found no other
way of ensuring that the conservation laws are obeyed. However, as we shall show
shortly, it turns out to be both possible and simple to enforce those laws by
making use, not of the flux variables, but of the primitive variables. At least
for one-dimensional problems, therefore, we propose to carry the primitive
varlables as auxiliary data. In multi—-dimensional problems, we would save
storage by computing the primitive variables as they are needed.

The foregoing may help to explaln our choice of a format for solutions to the

Riemann problem. It comprises a table with m columns, corresponding to the m

waves, and (m+2% rows. The first m rows make up a square matrix of which the
t

entry in the j row and k column is

Augk) = (change in uj across the kth wave) (2.1)
The entries in the (m+1)t‘n row are
a(k) = (average velocity of the kth wave) (2.2)

The entries in the (m+2)th row are

s(k) - th

(spreading rate of the kK~ wave) (2.3)

The quantities G(k) are neededcﬁg ensure a proper distinction between shocks and
rarefaction fans. We define § as the positive difference between the speeds
of the fastest and slowest characteristics of the k family. This 1is a positive
quantity for expansion waves, but zero for contacts and shocks.

We could fill in this table using any of the Riemann solvers referenced above,
and we could exploit other methods also. The wave path analysis of Osher and
Solomon [20] can be regarded in this way, as discussed by Roe [21}. We shall,
however, attach particular significance to tables having the following conser-
vation property; for j=l,..., m we require

(2.4)

(F),)R - (Fj)L =9 a

(k) , (k)
Ly Auj

Note that we coﬁld use this formula in<g3ny different ways. Harten, Lax, and
van Leer [4] begin by estimating the a and then arrive at a set of jumps
(k)
Au
3

Colella [6] estimates the Augk) and then, in effect, solves the m simultaneous

3
equations comprising (2.4) to find the a(k). (431ella's process could also be

" used to define average wave speeds, 1f the lu were taken from the exact
Riemann solution or from Osher and Solomon's analysis.

consistent with (2.4) by integrating around various control volumes.

A further possibility is to define the a(k) and the Augk) in such a way that

(2.4) 1s an algebraic identity. This is the approachjwe take here. For the
special case of 1deal compressible flow 1t leads to rather simple algebra, and
generates a first—order algorithm equivalent to that given in 5]. That
algorithm has the property that 1if u,, u are states which can be connected by
a single shockwave or contact discdﬁ%inﬁit%, then no other wave system is
activated. Colella's method shares that property, and has the advantage of being
applicable to gases with non—-ideal equations of state. Osher and Solomon's
method does not have the "shock-recognising” property, but other advantages are
claimed for it. Regardless of the actual method used to obtain the approximate
(or, indeed, exact) solution to the Riemann problem, we will refer to the
information specified in (2.1)-(2.3) as a Riemann table. In this way we impose
some unity on the varlous first—order methods. More importantly, however, we




will show that once the information has been assembled as a Riemann table, it can

be processed without regard to its origin so as to yield higher—order "monotone"
solutions. We observe that the second-order method of Harten [9] could be
formulated in much the same way.

CONSTRUCTING THE RIEMANN TABLE

In this section we are concerned with algebraic detail, and restrict attention to
the unsteady Euler equations for ideal compressible gasdynamics in one dimension.

The Eulerian conservation form is

Srut g E =0 (3.1)
where
| o | I opu, |
u=lepul ,F=|p+ pu | (3.2)
Pe | | ule + p) |
The presure p and total energy e are related by
e =B+ = pu’ (3.3)
We also use the notations
a = (YP/D)% (3.4)
for the sound speed, and
H = (etp)/p (3.5)

for the enthalpy.

Now consider the Riemann problem with initial data (pL, Uy, pL), (pR, Ups pR).

If both these states are close to some reference state (P, @i, p), the problem can
be linearised about these reference conditions, and then tabulated in the form
proposed above, with 3 having its natural meaning.

| Wave number (k) |

TABLE I | |
! o2 3 l
Auik) LD () e
Augk) D - 2) (2)g REP
Augk) Q(I)E7%;'— o +'%?) Q(ZI%? a(3)@;%;.+ 8a +‘%?)
2(K) a4 - 3 ) —




where
1) =-E%Z-(Ap - P&Au)
L2 =-§§-(32Ap ~ ap) (3.6)
o3 =-§é2-(Ap + padu)

and A(e) = (@) - (&) )

For the moment we omit mention of the spreading rate, since all characteristic
slopes are constant in the linearised problem. It is easily checked that

I Augk) = bu (3.7)

3

and that

= AF (3.8)

with error terms which are O(Az).

If the left and right states are widely different, we propose the following
algebraic problem. Find some average state (P, U, p) such that (3.7), (3.8) are
identically satisfied, when this average state i1s used to construct Table I,
including the computation of the coefficients (3.6). At first sight, the
proposal is unpromising; six simultaneous non—linear equations are to be
satisfied by three scalar quantities (¥, 4, a). However, it can quickly be seen
that the first equation of (3.7) is satisfied by any average state, and that the
second equation of (3.7) 1s the same as the first of (3.8). It also turns out
that the third of (3.7) is implied by the first and second of (3.8), so that
{(3.8) are the only equations we need to solve.

By substituting the coefficients a(k)
I,into the first two of (3.8), we find

from (3.6),and also the contents of Table

A(pu) = phu + ubp (3.9)
and A(Puz) = ZSGAu + GQAD (3.10)

If we then eliminate S from these equations we obtain for U the quadratic

equation
~2

32 ap - 20 Alpu) + A(pu®) = 0 (3.11)
whose soclutions are

~ . Apu) # [{aCow)}> - AOA(Duz)]%
Ap

4
- Prug ~ Py * (epep )t (up - oup)

If we take the positive roots, we do not arrive at a useful answer, but the




negative roots lead to

t

~ oLt T PR R (3.12)

o b+ ot

This is the ‘square root averaging' which was derived from apparently very
different considerations in [5 . Substituting this value of u back into (3.9)
leads quickly to

~ i .
p = (prR) (3.13)

The third equation of (3.11) is now, in effect, a direct expression for 3. Again
we substitute the trial solution, and this time we find

3

va?au = y[aup) - Gbp] + Ygl[A(pu3) - 3380 ~ 355%8u] (3.14)

After this equation has been expanded on the right-hand gside, a factor Au cancels
throughout, leaving

' 2.2 2
~ + —
er a2 ay PR Y RPL 4 y-1 LR Cp T Y (3.15)
LR r, +r 2 (r, + r )2
L R L R
where for typographical clarity we have introduced
ro= Gt = et (3.16)
L L * 'R R *

The expression (3.15) is not quite as simple as (3.12) and (3.13), but it does
demonstrate two nice properties. First, that if we have physically realistic

data, the square of a must come out positive, and secondly, that our solution is
invariant with respect to all uniformly moving observers because only velocity
differences appear in (3.6) or (3.15). Actually, we have not quite finished with
(3.15). Define a mean enthalpy

~2 ~2
u

H = + B (3.17)

Substituting (3.15) into this gives

rpHy + T Hy (3.18)

+
o, T TR

H =

which is, again, the same result as in [5}. In practice, a can be found more
quickly from (3.17), (3.18) than from (3.15). Finally, 1t may be checked that
the coefficients (or wave strengths) given by (3.6) are identically equal to
those derived from the matrix analysis in [S]; in particular, they share the

property that whenever Y Eﬁ can be connected by a single shock or contact
discontinuity, then every other wave is assligned zero strength.

From a mathematical point of view, it is quite striking to find such simple
results emerging; oune would like to know whether simllar results hold for some
special class of conservation laws. We were intrigued to learn that a very
closely related result has been found by M. Brio of the University of California
at Los Angeles. He sought the average state Ef(uL,uR), such that




AF = A(gf)ég_ (3.19)

This is a weaker condition than (3.8), but its solution is u* = G, a* = ;,
p* arbitrary.

From a philosophical polint of view, it is interesting to see that the
conservation condition (3.8) is met without any direct mention of the flux
variables appearing in Table I or in equations (3.6). This also has practical
consequences, Let us consider three—dimensional finite-~volume methods im which
the state of the flow is described by the average values of conserved variables
within each cell. To balance the fluxes around the cell boundaries we might
construct flux differences from combinations of the seven quantities (p, Duz,
pvz, pwz, puv, pvw, puw). Our formulae are constructed from differences of the
five quantities (p, p, u, v, w). Of course, this apparent saving is more than

offset by having to construct the five special averages (p, U, Vv, W, a).
However, using these averages not only restores the conservation properties but
also provides a full description of the flux difference splitting.

We will conclude this section by stating, in algorithmic form, a one-dimensional
first order, conservative, FDS scheme algebraically identical to that in [5].
Data consisting of p, pu, e 1s supposed to be given in cells of a uniform length
AX.

- %
(a) Compute Ri+% = (p1+1/pi)
(b) Compute, in this order,

. = R, .
i+t i+4 Py

143 7 Rypp ugyy +Hup) /Ry D)
Hiop = Reyy By P ED/R D

i+ [(Y"l)(ﬁ;%SQ)]%
(c) Compute

pp = (rDfey -4 piuiz]
uy = (pu), /oy
(d) Compute
BPysr =Py TPy
Aui+% Uiy Ty

BPyty = Pyyp T Py

(e) Compute ofl), o2 (3 from (3.6) and hence fill in Table I.
Note that all these stages, although they alm at providing the information needed
to create an upwind scheme, do not yet inveolve any logic, and are therefore
suitable for parallel or vector processing. Note also that the only abnormal
expense 1s the computation of an additional square root at stage (a). For flows
involving relatively small density fluctuations this can be evaluated cheaply by
means of simple approximations, valid if x is close to unity, such as




<2 o (64 x = 5/(140)] (3.20)

The final stage (f) is the only one to involve logic.

(£f) Subtract (At/Ax)a(k)Au§k) from (u if a or from (u )i if a(k)(O

j7i+l 3

ADMISSIBILITY CONDITIONS

The algorithm (a)—(f) above is identically equivalent to the first—order
algorithm described in [5]. It therefore repeats the defects of that method; in
particular the defect of admitting non-physical solutions. Let us recall how
these come about. Consider systems of conservation laws such that the mapping

u + F is many-one; for exmple, in the Euler equations, if F is given, a quadratic

Ehuation must be solved to find u giving two mappings of u onto F. Letu,, be
two states which map to the same flux vector.EAB, and consider two alternative
sets of data, Dl’ DZ’ whose elements are

D1={u’EA’ .."E-A’ -EB’ .."EB} (4.1a)

Py = lugs Hgo woes Mo Mo coes By (4.1b)

In general, one of D,, D, will represent a physically admissible shockwave (in
the case of the Euler equations, one such that pressure and density inecrease in
the flow direction) and the other of D,, D, will be inadmissible (2, 3, 4, 9].
However, either set of data will give rise"to F = F,_, and the FDS algorithm
accepts either set as a stable solution which need not be altered. To construct
an algorithm which accepts only the admissible data it 1is necessary to break the
symmetry of the scheme with respect to Dl’ D,. This 1s the purpose of the final
entry in the Riemann table; that is, the sprgading rate associated with each
wave.

Note that there are several ways of attempting to ensure physical correctness,
and that we make use of geometrical ideas rather then 1deas based upon the
concept of entropy, even though these latter are quite feasible for the Euler
equations [3, 4,9|. One of our reasons is that there are important physical
systems for which the concept of entropy 1s not available, but where the geometry
of characteristics does reliably discriminate between admissible and inadmissible
solutions. One such system involves the flow of a combustible mixture [22]. A
second reason, deriving from our theme of numerical efficiency, is that the
information needed to implement the geometrical arguments has already been
generated (in hidden form) in the previous section.

The geometrical condition is, of course, that an admissible discontinuity must be
assoclated with a wave family whose characteristics are non—diver%gnt. That is,
if the shock speed is S, and 1f it associated with waves of the k™ family whose

(k)

speeds are ay a (k) in the states to the left and right of the shock, then

R
aék) > S8 » aék) (4.2)

Normally in gasdynamics either both inequalities are strict inequalities
(shocks), or else both are in fact equalities (contacts), but in other systems
equality on just one side of (4.2) is possible. Clearly, if one of (4.la, b)
satisfies (4.2) the other does not. [See Jeffrey [23] for a proof that if (4.2)
is not satisfied in a continuum solution, the discontinuity is unstable}.

The task is to introduce a similar instability into the numerical scheme.
Suppose we encounter u,, u, as consecutive states i, i+l. If we meet them in
their admissible order we need take no action, but if the order is reversed the




algorithm must respond. Conservation still requires the total change to be zero,
so the only appropriate response is to make equal and opposite changes to the
cells i, i+l. We now modify the algorithm described in the previous gaction so
as to achieve this property whilst retaining continuous dependence on the data.

(k) , (k)

Let ai+% be the average wavespeed, and 61+% the spreading rate (whose estimation

we have yet to describe) for the kth wave across the i+4 interface. We will

5(K)

ensure that
i+}

is zero for conmpression waves or contacts. For rarefaction
waves there will be respectively least and greatest wavespeeds equal to

a - 16, a + 6. We test to see if both of these are of the same sign; if so it
will still be appropriate to use the unmodified algorithm. Therefore, almost the
whole cost of the modification comes from making this simple test for each wave
system and each pair of consecutive cells. If the least and greatest speeds are
of different sign, we will send to the 187 cel1 a signal

-EA—Z—X(a - $8)Au (4.3a)
and to the (i+1)F! cell a signal
, At ,
25 (a + $8)eu (4.3D)

the indices i+} and k being understood. The total signal is, as before, VAu,
where v = a At/Ax is the Courant number, and this ensures conservation. 1If the
test is only just met, one of the signals is zero.

It remalns to give an inexpensive prescription for evaluating & in the case of
the Fuler equations. Across simple waves, with k=1 or 3, there is no change of
the generalised Riemann invarilants L23]

J(1) 2

= L i
u + =1 a i (4.42)

(3) 2 ,
J u '7:1 a (&.Ab)
Hence, the change in u~a across a wave of the first family, or uta across a wave
of the third family 1s, in either case
(k) _ v+l , (k)

where Au(k) is the change in fluid velocity across the kth wave and the notation
denotes the positive part x, = $(x +| x| ). Later we employ the analogous
notation x_ = $(x -] x|).

The expression (4.5) is exact; it is more in the spirit of approximate Riemann
solvers to replace it by an approximation which usgs information already
available. From the facts that for an ideal gas a~ = Yp/p = 9p/3p we readily
obtain across either the first or third wave

o~ Y_l
Aa Toa Ap (4.6)

From this approximate equation, and the constancy of J(l) across the first wave,
we obtain




6(1) = —Qliéli-afl) (4.7a)
2p
and, by a simlilar argument
5(3) L (rtDa (3

~ (4.7b)
2p +

For the Euler equations, of course

§(2) - 0 (4.7¢)

For other systems of equations, alternatives to (4.7) would have to be sought.
It might be necessary to take Iinto account any distinctive type of non-linearity
associated with a particular systemn.

HIGHER-ORDER ALGORITHMS

In the previous sections we described, in effect, a first-order FDS algorithm for
solving initial~value-problems. The required information was assembled as a set
of Riemann tables; in computing terms thilis set defines an array having dimensions
mx (mt2) x (n-1), where m is the number of unknowns (or, equivalently, the
number of independent wave systems) and n is the number of cells in the computing
domain. We now employ this information to obtain higher—order solutions which
give clear resolution of any discontinuities which may appear in the flow. Our
procedure is independent of the method used to construct the Riemann tables.
Indeed, it is independent of the particular system of conservation laws for which
the Riemann problems have been solved.

The technique relies on the still somewhat heuristic concept that by calculating
separately the changes in each flow varjable due to each wave system we are
effectively computing the solution to m”~ independent scalar problems. It {is
therefore sufficient to describe the scalar case, with the understanding that u

(k) (k) (k)

can be interpreted as uj, a as a y V as v , and Au as Au . Frequently the

3
subscript i+4 is also to be unders%ggd. Any ?Eyer spatial index is always
explicitly stated. We introduce o = ggn V and note that the first-order

algorithm involves sending a signal of strength v +1 Au, , to be subtracted from
u at i+$+io. An algorithm equivalent to the Lax—%eﬁdro}fzscheme rasults from
sending $v(1-Vv)Au to 1, and 3v(l+v)Au to i+1. Let the weaker of these two
signals, that is 4v(l-| v| )Au, be written as Au*. Then a reformulation of
Lax-Wendroff 1s that after completing the first-order algorithm we subtract Au*
from the physically unrealistic target i+i-%1o0, but maintain coaservation by
adding Au* at i+}i+}0. This transfer can be regarded as analogous in its purpose
to the antidiffusion stage of Flux—Corrected Tranmsport [2&, 25}. In the scheme
being described here, the low—order component of an FCT method is represented by
the first—order FDS algorithm, and the higher—order component will be either
Lax-Wendroff, or a small perturbation of it. As with FCT, the key element which
allows us to avoid the 'wiggles' associated with classical high-order methods is
to limit the magnitude of the antidiffusive term. The particular recipe which we
adopt for this limiting process has been described elsewhere [16, 26] but for
completeness we repeat it, with some discussion, below.

Define
= *
b1 Au1+i (5.1)
b2 = Au;+§—o (5.2)




In the Lax-Wendroff scheme, transferring the effect of b, from the physically
realistic target i+i+}o to the unrealistic target {+}-%0"1is something which
contravenes the proper direction for information flow, but is justifiable on
formal mathematical grounds whenever the flow is sufficiently smooth. In fact,
for smooth flows this non-physical transfer term could be estimated with
sufficient accuracy by examining the interaction between any other nearby pair of
adjacent cells. Thus, b,, the estimate taken from the upwind cell, is equally
valid from the viewpoint®of accuracy. If we do decide to use b,, then the scalar
version of the algorithm is "wholly upwinded", and the systems version is wholly
upwinded with respect to each wave system.

Experience shows that wholly upwinded algorithms are very effective indeed at
capturing shockwaves which are strong and either stationary or nearly so, but are
much less effective if the shocks are weak or rapidly moving. The practical
criterion(ﬁ?ems to be whether the shockwave is sufficlently strong to reverse the
sign of a . When this is not the case, the wholly upwinded schemes cannot
claim to be any more physically realistic than Lax-Wendroff. Information,
although sent in the right direction, is being propagated too fast, and wiggles
build up ahead of the shockwave rather than behind it [26, 27]. A recipe which
deals equally well with both strong and weak shockwaves is to transfer neither

b, nor b,, but some "average” value of the two. The essential features of the
averaginé process are that 1f b,, b, are close to each other in value, then the
average B(b,, b,) shall be close to both of them, and if b,, b, are very
different then %he average shall be close to the smaller o% th% two. The first
of these properties ensures that second-order accuracy 1s retained for smooth
flows; the second property reduces the disruptive effect of the anti-diffusion in
non-smooth flows. Note that the averaging function B must have the homogeneous
property B(kb,, kbz) = kB(bl, b2); otherwise the result will depend on the units
of measurement.

Before specifying the averaging procedure more precisely, we note that many
authors have by now published schemes which are akin to the above, and are often
{dentical to it in the simple special case of linear advection. All the methods
are supported by heurlstic arguments. At first, these arguments seem different,
but closer examination reveals strong similarities between the arguments used to
support the methods, as well as between the methods themselves. Historical
precedence goes to van Leer, whose work is mostly based on the idea of
preprocessing data which is assumed to be plecewise linear within cells. No cell
is allowed, however, to have a variation much stronger than that found in its
neighbours. Instead, discontinuities are allowed to develop at cell interfaces,
and this strengthens the first—-order terms in the algorithm at the expense of
certain second-order terms. The culmination of this approach is the somewhat
complex MUSCL code described in [12], which has since been considerably
simplified, see for example [28]. Harten [9] supports his scheme by arguments
which associate certain second-order terms with a spurious wavespeed, which must
be limited to avold the spread of wiggles. Since the effect of a wave 1is
proportional to the product of its speed and amplitude, 1t probably makes no real
difference which of the two we choose to limit. Harten has shown 10] that his
scheme 1s identical to MUSCL in the case of linear advection, and in fact both
schemes are then also identical to the present scheme.

An averaging function which appears widely in these references is the function,
christened by Sweby the "minmod” function, which 1s zero if bl’ b, have opposite
sign, and otherwise equals whichever of b,, b2 is closer to zero. If this
function 1is inserted into each scheme at Ehe dppropriate place, then the results
are very similar indeed [29]. Something which has much more effect on the
quality of the results is to change the averaging function, and van Leer [30] has
recommended the harmonic mean, defined by




y b)) = if b, b, »0
1?72 b+ b, 1 2 (5.3)

= 0 if b1 b2 <0

as well as other choices [31], all designed to produce a value biased toward the
smaller input. Numerical experiments reveal that all such choices work well with
moving shocks as well as with stationary shocks, but still find difficu%ﬁ¥ if the
shocks are very weak, in the sense of producing only small changes in a . This
will not be serious 1f the shocks are also weak in the sense of having small
amplitude. The case which causes practical difficulty 1s the so-called linearly
degenerate case [23, 26] which manifests itself in the Euler equations as the
contact discontinulty, across whlch pressure 1Is continuous, but density 1is not.
The relevant "wavespeed” i1s the fluild velocity (or, in multidimensional flows,
its normal component) and this is also a continuous quantity. Experiments on
this case reveal [32] a slow spreading of discontinuous data, such that the
transition reglions will exceed any stated width within finite time.

Woodward and Colella have described [13] an elaborate MUSCL-type code, containing
a mechanism which appears to treat contact discontinuities rather well, by
actually augmenting the "anti-diffusive"” terms under some circumstances. We can
incorporate this effect very cleanly into the present scheme, by adopting an
averaging function such that if b,, b, are not very different, then the average
is biassed toward the larger of the two. The following rule has been found
remarkably effective.

1
If bl’ b2 are of different sign choose |
B(bl, bz) = 0,

If b,, b, are of the same sign, and differ
by a factor greater than 2.0, choose

l

|

|

I
If bl’ b, are of the same sign, and differ |
by a fac%or less than 2.0, choose |

B(b;, by) = maxmod (b;, b,) |

A
where maxmod is the function which selects the argument furthest from zero. The
rule (5.4) defines a continuous function of two variables, which has been
christened "Superbee”. It has the remarkable property, established by extensive
numerical experiments [32] that when 1t is used as the averaging function in the
present scheme, and the scheme is specialised to linear advection, then
discontinuities in the initial data no longer diffuse without limit. By this we
mean that a given fraction of the amplitude 1s contained within a zone of finite
width for all time. Further informatlion regarding this, and other, averaging
functions 1s available in [32, 33, 34]. A note of caution is required by Sweby's
observation [34] that the Superbee function can give rise to instability in’
non-linear problems, unless the CFL number is kept below 4. He recommends that
the use of Superbee should be reserved for the degenerate fields (ie contact

discontinuities) and a more conventional average, such as (5.3), employed for the
remalning waves.




We shall now set out the above scheme in a more explicitly algorithmic form;

supposing that steps (a) — (f) as described in Section 3 have already been
carried out.

(g) To ensure admissible solutions, test each pair of cells for sonic
expansion waves. Flag any interface found with an integer indicating the

wave number k involved. For each flagged interface where aiti > 0, transfer
a signal

At (x) _, (%) (k)

5 i (ai+% ) 51+§J butity (5.5a)
from i+l to i. For each flagged interface where aiig < 0, transfer a signal

At (k) (k) (k)

73;-(ai+% + } 51+5) dutiiy (5.5b)

from 1 to i+l.

(h) To compute a second—order correction, begin by finding the non-physical
signals needed to implement the present version of Lax-Wendroff, ie

k) _ o &y _ (K (k)
AR BN C I IO I 1T A (5.6)
For any flagged interface, 1t seems satisfactory to set Ag*iii = 0,
(1) Let b, = b(k) be a scalar which acts as a norm for the vector Au*<k). In
: "1 i+ - i+}

practice, we use merely the first component, ie the change in density.

Let b2= b(k) , where o = sgn a(k) be the norm associated with the same wave

iti-o i+
family in the upwind cell. Let us define a limiting factor

8 = B(b;, by)/b; (5.

where B 1s one of the averaging functions discussed above. Because B must be
homogeneous, this may be written

g = B(1, bZ/bl) (5.8)

(i) Transfer BAu*iE; from i+i+ioc to i+i-to.

Steps (g) to (j) complete a second-order, "monotone”, FDS algorithm for
one-dimensional initial-value problems. These steps are difficult to vectorise,
and their efficient implementation depends on the machine being used. On a

CRAY 1, it has proved possible to update about 60,000 data points in each second
of CPU time.

Boundary procedures for one—-dimensional flow are usually very simple. Closed
ends are dealt with by using image cells. Open ends merely require a statement
that there are no incoming waves. Again, image cells can be used, with a Riemann
table describing the interaction between the image cells and the last real cell.
The only time this table is ever consulted is for information about the strength




of waves which may be entering the domain. Therefore, this table 1s filled with
zeroes for all the waves, including the unused outgoing waves. Boundary
procedures which model more complex events usually need to be supplied from ad
hoc arguments.

NUMERICAL RESULTS

To illustrate the robust nature of our scheme, we have applied it to a test
problem proposed by Colella and Woodward [17]. Since this problem involves very
strong wave interactions, we feel that it gives convincing support to our
strategy of splitting the flux differences Into "scalar” components. We also
take satisfaction that the code used to produce these results contaians no
"adjustable constants” or "problem-specific” features. The most empirical aspect
of the code is the choice of an averaging function, and even this is closely
based on the scalar analysis [32, 33, 34|. In fact, we also choose this test
problem because it allows us to display the improvements brought about by a more
sophisticated averaging function.

The problem involves flow in a parallel pipe extending over 0 < x <€ 1 and closed
at each end. At t=0, the tube contains an ideal gas (v = l.4), of unit density
everywhere, and at rest. However, two dlaphragms at x = 0.1 and x = 0.9 separate
the gas into three reglons with different gressures. n the central region

p = 107°, and at the left and right p = 10° and p = 10” respectively. The
diaphragms burst simultaneously and strong shockwaves rush into the central
region, followed by contact discontinuities, whilst expansion fans move out to
each end and are then reflected. When the shockwaves meet, a brief splke of very
high pressure and density is created, and a third contact discontinuity is
created. A more detailed description is to be found in [17].

Our graphs (see Fig 3) show density distributioms at t = 0.010, 0.016, 0.026,
0.028, 0.030, 0.032, 0.034 and 0.038. The left—hand member of each pair shows
results computed using the "minmod" averaging function, and the right—hand member
shows results from the Superbee function. The computing grid comprises 1200
equal intervals. In every plot we can identify two shockwaves, each usually
marked by two poilnts occupying the transition region. -The other regions of
strong variation are the contact discontinuities, which are not so cleanly
represented. In fact, they extend, in the left-hand plots, over 25 to 30 mesh
intervals, but in the right-hand plots the extent is typically 6 or 7 intervals.
This fourfold increase in resolution implies an order of magnitude reduction in
the computing times required to achieve results of similar quality at the same
elapsed times.
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Fig 1 - General solution to the Riemann problem
for the Euler equations.

n+l

i+
u = u u = ua,
- — =i+l

Fig 2 - Interaction of fluid in adjacent cells.
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